- 产品描述
lymphatic filariasis淋巴丝虫病毒检测试剂
广州健仑生物科技有限公司
广州健仑长期供应各种生物原料,主要代理品牌:美国Seracare、西班牙Certest、美国Fuller、美国NOVABIOS、 Cellabs等等。
Cellabs公司是一个的生物技术公司,总部位于澳大利亚悉尼。专门研发与生产针对热带传染性疾病的免疫诊断试剂盒。其产品40多个国家和地区。1998年,Cellabs收购TropBio公司,进一步巩固其在研制热带传染病、寄生虫诊断试剂方面的位置。
lymphatic filariasis淋巴丝虫病毒检测试剂
该公司的Crypto/Giardia Cel IFA是国标*推荐的两虫检测IFA染色试剂、Crypto Cel Antibody Reagent是UK DWI水质安全评估检测的*抗体。
【Cellabs公司产品介绍】
公司的主要产品有:隐孢子虫诊断试剂,贾第虫诊断试剂,疟疾诊断试剂,衣原体检测试剂,丝虫诊断试剂,锥虫诊断试剂等。Cellabs 的疟疾ELISA试剂盒成为临床上的一个重要的诊断工具盒科研上的重要鉴定工具。其疟疾抗原HRP-2 ELISA检测试剂盒和疟疾抗体ELISA检测试剂盒已经成为医学研究所的*试剂盒。Cellabs产品主要包括以下几种方法学:直接(DFA)和间接(IFA)免疫荧光法,酶联免疫吸附试验(ELISA),和胶体金快速测试。所有产品都是按照GMP、CE标志按照ISO13485。
主要产品包括:隐孢子虫诊断试剂,贾第虫诊断试剂,疟疾诊断试剂,衣原体检测试剂,丝虫诊断试剂,锥虫诊断试剂等。
广州健仑生物科技有限公司与cellabs达成代理协议,欢迎广大用户咨询订购。
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询2042552662
【Seracare产品介绍】
货号 | 产品名称 | 产品描述 | 规格 | |
免疫荧光试剂盒(IFA kit) | ||||
KR1 | Crypto Cel | 隐孢子虫(Cryptosporidium)间接免疫荧光检测试剂 | 50 Test | |
KR2 | Crypto/Giardia Cel | 隐孢子虫&贾第虫(Cryptosporidium & Giardia)间接免疫荧光检测试剂 | 50 Test | |
KG1 | Giardia Cel | 贾第虫(Giardia)间接免疫荧光检测试剂 | 50 Test | |
KC1 | Chlamydia Cel | 沙眼衣原体(Chlamydia trachomatis)间接免疫荧光检测试剂 | 50 Test | |
KC2 | Chlamydia Cel LPS | 衣原体 lipopolysaccharide (LPS)间接免疫荧光检测试剂 | 50 Test | |
KC3 | Chlamydia Cel Pn | 肺炎衣原体(Chlamydia pneumoniae)间接免疫荧光检测试剂 | 50 Test | |
KP1 | Pneumo Cel | 卡氏肺孢子虫(Pneumocystis carinii)间接免疫荧光检测试剂 | 50 Test | |
KP2 | Pneumo Cel Indirect | 卡氏肺孢子虫( Pneumocystis carinii)间接免疫荧光检测试剂 | 50 Test | |
酶免试剂盒 ELISA kit | ||||
KG2 | Giardia CELISA | 贾第虫(Giardia)ELISA kit | 96 Test | |
KE1 | Entamoeba CELISA Path | 溶组织内阿米巴(Entamoeba histolytica) ELISA kit | 96 Test | |
KF1 & KF2 | Filariasis CELISA | 班氏丝虫(Wuchereria bancrofti ) ELISA kit |
| |
KM2 | Malaria Antigen (HRP2) CELISA | 恶性疟原虫(Plasmodium falciparum) 抗原 ELISA kit | 192 Test | |
KMC3 | Pan Malaria Antibody CELISA | 间日、三日、恶性及卵形疟疾(Malaria)ELISA IgG kit | 192 Test | |
KT2 | T. cruzi IgG CELISA | 克氏锥虫(Trypanosoma cruzi) ELISA IgG kit | 192 Test | |
KT3 | Toxocara IgG CELISA | 弓首线虫(Toxocara canis) ELISA IgG kit | 192 Test | |
KF3 | Filariasis Ab (Bm14) CELISA | 淋巴丝虫病(lymphatic filariasis) ELISA IgG kit | 480 Test | |
KM7 | Quantimal™ pLDH Malaria CELISA | 疟疾pLDH抗体检测 ELISA kit | 96 Test |
二维码扫一扫
【公司名称】 广州健仑生物科技有限公司
【】 杨永汉
【】
【腾讯 】 2042552662
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-3室
【企业文化】
同样,延髓的呼气神经元下行冲动除 引起脊髓呼气肌运动神经元兴奋外,还抑制吸气肌运动神经元活动。 延髓呼吸中枢具有内在节律活动,在整体内,吸气神经元能发放阵发 性的成簇电位,每分钟12~15次,与呼吸频率相似,而呼气神经元无自 发性放电。呼吸中枢在猫的脑桥与延髓之间横断,保留延髓以下的部 分,动物仍有节律性呼吸,表明延髓是产生原始的节律性呼吸活动的 基本部位。但此时的呼吸不同于正常,呈不规则的喘息样等呼吸形式 ,提示正常呼吸节律的形成还需要脑的其他部分参与。若在中脑与脑 桥之间横断脑干,保留脑桥以下的部分,则动物呼吸无明显改变。以 上结果表明,zui基本的呼吸中枢在延髓,而正常呼吸节律的形成有赖 于延髓与脑桥的共同配合。[1] 进一步研究显示,延髓的呼吸相关神 经元可分为背侧呼吸组(dorsal respiratory group,DRG)和腹侧 呼吸组(ventral respiratory group,VRG)。背侧呼吸组位于延 髓背内侧,以吸气神经元为主,其轴突终止于脊髓颈、胸段的隔神经 运动神经元和肋间神经运动神经元。背侧呼吸组的神经元接受肺牵张 感受器、外周化学感受器等处的传入冲动,起着整合传入信息和调节 呼吸运动的作用。腹侧呼吸组所含的吸气神经元和呼气神经元数目大 致相当。其中的前包钦格复合体(pre-Botzinger complex)与呼吸 节律起源有关。[1] 呼吸神经元相对集中于臂旁内侧核和相邻的 Kolliker-Fuse(KF)核,合称PBKF核。PBKF与延髓的呼吸神经核团 之间有双向,形成调控呼吸的神经网络。在麻醉猫,切断双侧迷 走神经,损毁PBKF可出现长吸式呼吸,提示该区的作用是限制吸气, 促使吸气向呼气转换,具有稳定呼吸类型、减慢节律和影响呼吸时程 等呼吸调整作用。[1] 在猫的中脑水平切断,动物的呼吸无明显改变 ,表明大脑皮层不是产生节律性呼吸的必需部位。
Similarly, the downward impulse of the medulla oblongata neurons inhibits the excitatory neurons of the expanses of the spinal cord and also inhibits the activity of the inspiratory muscle motor neurons. The medullary respiratory center has intrinsic rhythmic activity. In the whole, inspiratory neurons can deliver clustered potentials of 12 to 15 beats per minute, similar to the respiratory rate, and there is no spontaneous discharge of expiratory neurons. The respiratory center crosses between the cat's pons and the medulla oblongata and retains the portion below the medulla oblongata. The animal still has rhythmic breathing, indicating that the medulla oblongata is the basic site of primitive rhythmic respiratory activity. However, the breathing at this time is different from normal, with irregular breathing patterns such as wheezing, suggesting that the formation of normal breathing rhythm requires the participation of other parts of the brain. If the brain stem is crossed between the midbrain and the brain bridge and the portion below the pons is preserved, the animal's breathing will not change significantly. The above results indicate that the most basic respiratory center is in the medulla oblongata, and the formation of normal respiratory rhythm depends on the cooperation of the medulla oblongata and pons. [1] Further studies have shown that the medullary respiratory-related neurons can be divided into the dorsal respiratory group (DRG) and the ventral respiratory group (VRG). The dorsal respiratory group was located in the dorsal medial aspect of the medulla oblongata. The inspiratory neurons were predominant. The axons terminated at the septal cervical and thoracic septal motor neurons and intercostal motoneurons. The neurons in the dorsal breathing group receive afferent impulses at the lung stretch receptors, peripheral chemoreceptors, etc., and they function to integrate incoming information and regulate respiratory motion. The number of inspiratory neurons and expiratory neurons contained in the ventral respiratory group was approximay equivalent. Among them, the pre-Botzinger complex is related to the origin of respiratory rhythm. [1] Respiratory neurons are relatively concentrated in the parabrachial nucleus and adjacent Kolliker-Fuse (KF) nuclei, collectively known as PBKF nuclei. There is a two-way connection between PBKF and the respiratory nucleus of the medulla oblongata, forming a neural network that regulates breathing. In anaesthetized cats, cutting off the bilateral vagus nerve and damaging PBKF may result in long-breathing breathing, suggesting that the role of this area is to limit inhalation, promote inspiration to exhalation, have a stable breathing pattern, slow rhythm, and influence breathing schedules. Breath adjustment. [1] When the cat's midbrain level was cut off, there was no significant change in the animal's respiration, indicating that the cerebral cortex is not an essential site for rhythmic breathing. Clinically, the vegetative respiration can be maintained evenly and evenly. However, the upper center of the cerebral cortex has a regulating effect on respiration, and within a certain limit, it can breathe freely or deepen and accelerate breathing.